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• Long-term benefits:

• Optimised process

Introduction - Motivation
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• Long-term benefits:
• Lighter designs

• Optimised process

Introduction - Motivation

Ultrasonics and NDT Group
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Manufacturing 

Process

Manufacture
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conformance to 

design

Future lighter 
designs

Reduced 
uncertainty 

Less additional 
thickness
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• Using MTC’s Algorithm Deployment Support Service
• Transitions Software Engineering Documents
• Currently transitioning into supply chain:

• Stage 1: Analytic-signal and instantaneous parameters
• Stage 2: Ply tracking
• Stage 3: Out-of-plane ply orientation and wrinkle mapping
• Through: Ultrasonic Sciences Ltd, Wavelength NDT/UTEX

• Planning the project consortium for:
• Stage 4: 2D woven composite classification and mapping
• Through DolphiTech (all four stages) for DolphiCam2.

Technology Transitioning

Ultrasonics and NDT Group
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Stage 1: Analytic-signal and 
instantaneous parameters
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Ultrasound 3D data sets
• Normal incidence focused probe – focused on mid-plane

Ultrasonics and NDT Group 8

 

   

  

3D Characterisation Methodology

Ply reflections

B-scansC-scan



• CFRP
• Resin layers reflect
• Interference between 

reflections
• Weak resonances, eg

• 8 MHz for 0.189 mm plies

• Resonances disrupted by:
• Ply thickness variations
• Material property 

variations

• Localised response
• Reflections are only weak

Ultrasonic Propagation in CFRP
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Analytic Signal Formulation

• 8 plies in water – normal incidence pulse-echo
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Measured parameter is usually acoustic pressure (proportional to particle velocity) 



Analytic Signal Formulation

• Analytic signals
• Mass-spring analogy
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• Particle Displacement. 

• Particle Velocity 
• 90° (π/2) out of phase 

with displacement



Analytic Signal Formulation

• Analytic signals
• Mass-spring analogy
• Energy transfer

• Particle Displacement.
• Potential energy = ½kx2

• Particle Velocity 
• Kinetic energy = ½mv2
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• Analytic Signal a(t)

where: A(t) is instantaneous amplitude
ϕ(t) is instantaneous phase
"
#$

dϕ
d% is instantaneous frequency

(local phase gradient)
• Use a Hilbert Transform to create 

imaginary part from real waveform.

Instantaneous parameters
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• At resonance, a particular phase is 
locked to resin layers between plies.

Analytic Signal Response
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8-ply CFRP laminate, 0.25 mm ply spacing, between matching layers
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• Simulated ply drop, wrinkle and delamination
Instantaneous Instantaneous Instantaneous

Simulation Amplitude Phase Frequency

Instantaneous parameters



Stage 2: Ply tracking
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• Immersion scan with input-pulse phase: ϕ0=π/6
• Front locked at: ϕ0, back at: ϕ0-π

Ply Tracking

Ultrasonics and NDT Group
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• Immersion scan with input-pulse phase: ϕ0=π/6
• Front at: ϕ0, back: ϕ0-π, resin-layers: ϕ0-π/2, 

ϕ0

Ply Tracking
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Front-surface Gate
ϕ0

Back-surface Gate
ϕ0-π

Resin-layer Gate: ϕ0-π/2



• Simulated ply drop, wrinkle and delamination

Simulation Amplitude Phase Frequency Ply Tracking

Ply Tracking



• Tape gaps and overlaps to cause wrinkling

Ply tracking

X-ray CT data



Ply Tracking

X-ray CT scan With ply-tracking overlay



Stage 3: Ply Wrinkling
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5 mm

Segmented
Phase B-scanRF B-scanWater

CFRP

Identify front and back surface

Convert time to depth, taking into account the different velocities
To retain true surface profile don’t interface gate, fit a plane to the front surface

X-ray CT of wrinkled
test sample

Validation by comparing ultrasonic-derived results to X-ray CT slices

Phase B-scan

Segment

Ply Wrinkle Measurement



Ply Wrinkle Measurement

• ‘Colours’ look correct.
• More quantification required.

Ply angle overlaid on phase data.

• Shows angles measurements accurately
measure what is in the phase data

Vector lines (red) overlaid on phase data
.

Do measurements
map to CT data?

A Structure Tensor is used to determine gradients in the 3D phase



Stage 4: In-plane waviness, stacking 
sequence, 2D and 3D woven composites
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• Thickness variations in resin layers produce amplitude variations 
which track fibre tows. 

• Need focused probe  
• Centre frequency and bandwidth at approximately the ply resonance frequency
• -6dB Focal spot size less than tow width
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Fibre-tow sensitivity in ultrasound scan• Use amplitude data

Fibre tows

Resin layer

Ply 1

Ply 2

• Analyse 2D region and step in raster scan. 
• Build up a 2D fibre-angle orientation map.
• Step to next depth and repeat so we perform at every 3D 

pixel location.
• In regions with ply wrinkling, x-y slice is inappropriate
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In-plane amplitude C-scan at depth = 1.4 mm 
(approx. mid-laminate)

In-plane fibre orientation
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A Radon Transform is used to measure the dominant fibre-tow angle.

• We can measured the 
PLY orientation

• Since fibres are 
constrained to plies, use 
ply orientation to guide 
our 2D processing

• Perform at every 3D 
pixel location

• Smooth the phase data 
‘aligned to plies’

• Cross section with phase-derived ply-location overlay

• Shows double plies

In-plane fibre orientation
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Fibre orientation Results

3D In-plane fibre orientation map

In-plane fibre orientation



3D Woven Composites
Orthogonal weave example
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6 regions (yarns 0, 1, 4, 5, 6, 9) 
with different velocities

Probe

1.
7 

m
m

4 mm

Orthogonal weave FE modelling

water

Each fibre orientation 
has a different color in 
PZFlex

OnScale (PZFlex) Model
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Binding-yarn effect from FE modelling
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Instantaneous parameters

Binder-yarn region: 5 MHz Instantaneous. amplitude

Experiment:

Analytical 
model:

Finite 
Element 

model:
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Experiment:

Analytical 
model:

Finite 
Element 

model:

Instantaneous parameters

Binder-yarn region: 5 MHz Instantaneous frequency

Conclusion: Level of compaction is important in modelling & in practice



Defect-detection Strategy
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The Unit Cell

Unit cell is the smallest repetitive element in 2D or 3D

Unit cell

y

x
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3D-woven composite - Defect detection

In-plane Benchmark Subtraction technique
For each depth below the surface, use the in-plane C-scan…

• Create a ‘benchmark’ pristine scan using a unit cell and cross-
correlation in 2D

• Subtract the benchmark scan from the actual measured scan

Use of the instantaneous amplitude for these results, but should 
also work with instantaneous frequency

Method demonstrated using FE data, then 
applied to experimental data…




