

Transitioning ultrasonic ply-tracking algorithms from academia to industry

Robert A Smith¹,

Professor of NDT and High Value Manufacturing Director of the UK Research Centre in NDE

Luke Nelson¹, Rostand Tayong¹ and Laura Maybury²

¹Dept. of Mechanical Engineering, University of Bristol, BS8 1TR, UK. ²University of the West of England, Bristol, UK

Acknowledgements

• Prof Paul Wilcox

• EPSRC Fellowship in Manufacturing

Engineering and Physical Sciences Research Council

- Introduction
- Stage 1: Analytic-signal and instantaneous parameters
- Stage 2: Ply tracking
- Stage 3: Ply wrinkling
- Stage 4: In-plane waviness, Stacking sequence,
 2D and 3D woven composites
- Transitioning algorithms to industry
- Conclusions

Introduction - Motivation

• Long-term benefits:

Introduction - Motivation

- Using MTC's Algorithm Deployment Support Service
 - Transitions *Software Engineering Documents*
 - Currently transitioning into supply chain:
 - Stage 1: Analytic-signal and instantaneous parameters
 - Stage 2: Ply tracking
 - Stage 3: Out-of-plane ply orientation and wrinkle mapping
 - Through: Ultrasonic Sciences Ltd, Wavelength NDT/UTEX
 - Planning the project consortium for:
 - Stage 4: 2D woven composite classification and mapping
 - Through DolphiTech (all four stages) for DolphiCam2.

Stage 1: Analytic-signal and instantaneous parameters

3D Characterisation Methodology

Ultrasound 3D data sets

Normal incidence focused probe – focused on mid-plane

Ultrasonics and NDT Group

Ultrasonic Propagation in CFRP

- CFRP
 - Resin layers reflect
 - Interference between reflections
 - Weak resonances, eg
 - 8 MHz for 0.189 mm plies
 - Resonances disrupted by:
 - Ply thickness variations
 - Material property variations
 - Localised response
 - Reflections are only weak

• 8 plies in water – normal incidence pulse-echo

Measured parameter is usually acoustic pressure (proportional to particle velocity)

Analytic Signal Formulation

- Analytic signals
 - Mass-spring analogy

- Particle Displacement.
- Particle Velocity
 - 90° (π/2) out of phase with displacement

Analytic Signal Formulation

- Analytic signals
 - Mass-spring analogy
 - Energy transfer
 - Particle Displacement.
 - Potential energy = $\frac{1}{2}kx^2$
 - Particle Velocity
 - Kinetic energy = ½mv²

Instantaneous parameters

• Analytic Signal *a*(*t*)

$$a(t) = A(t)e^{i\phi(t)}$$

where: A(t) is instantaneous amplitude $\phi(t)$ is instantaneous phase

$$\frac{1}{2\pi} \frac{d\phi}{dt}$$
 is instantaneous frequency

(local phase gradient)

• Use a **Hilbert Transform** to create imaginary part from real waveform.

Analytic Signal Response

Imaginary

-2

-1

0

1

2

 $a(t) = A(t)e^{i\phi(t)}$

• At resonance, a particular phase is *locked* to resin layers between plies.

8-ply CFRP laminate, 0.25 mm ply spacing, between matching layers

• Simulated ply drop, wrinkle and delamination

Stage 2: Ply tracking

- Immersion scan with input-pulse phase: $\phi_0 = \pi/6$
- Front locked at: ϕ_0 back at: ϕ_0 - π

- Immersion scan with input-pulse phase: $\phi_0 = \pi/6$
- Front at: ϕ_{0} , back: ϕ_0 - π , resin-layers: ϕ_0 - $\pi/2$,

• Simulated ply drop, wrinkle and delamination

Tape gaps and overlaps to cause wrinkling

X-ray CT data

X-ray CT scan

With ply-tracking overlay

Stage 3: Ply Wrinkling

Ultrasonics and NDT Group

Validation by comparing ultrasonic-derived results to X-ray CT slices

Convert time to depth, taking into account the different velocities

To retain true surface profile don't interface gate, fit a plane to the front surface

A Structure Tensor is used to determine gradients in the 3D phase

Stage 4: In-plane waviness, stacking sequence, 2D and 3D woven composites

In-plane fibre orientation

Use amplitude data

Fibre-tow sensitivity in ultrasound scan

- Thickness variations in resin layers produce amplitude variations which track fibre tows.
- Need focused probe
 - Centre frequency and bandwidth at approximately the ply resonance frequency
 - -6dB Focal spot size less than tow width

In-plane amplitude C-scan at depth = 1.4 mm (approx. mid-laminate)

- Analyse 2D region and step in raster scan.
- Build up a 2D fibre-angle orientation map.
- Step to next depth and repeat so we perform at every 3D pixel location.
- In regions with ply wrinkling, x-y slice is inappropriate

A Radon Transform is used to measure the dominant fibre-tow angle.

- We can measured the PLY orientation
- Since fibres are constrained to plies, use ply orientation to guide our 2D processing
- Perform at every 3D pixel location
- Smooth the phase data 'aligned to plies'

- Cross section with phase-derived ply-location overlay
- Shows double plies

In-plane fibre orientation

Fibre orientation Results

3D Woven Composites

Orthogonal weave example

31

Orthogonal weave FE modelling

bristol.ac.uk

OnScale (PZFlex) Model

University of BRISTOL

Binding-yarn effect from FE modelling

Ultrasonics and NDT Group

bristol.ac.uk

Instantaneous parameters

Instantaneous parameters

Conclusion: Level of compaction is important in modelling & in practice

Defect-detection Strategy

bristol.ac.uk

In-plane Benchmark Subtraction technique

For each depth below the surface, use the in-plane C-scan...

- Create a 'benchmark' pristine scan using a unit cell and crosscorrelation in 2D
- Subtract the benchmark scan from the actual measured scan

Use of the instantaneous amplitude for these results, but should also work with instantaneous frequency

Method demonstrated using FE data, then applied to experimental data...